We propose a novel deep neural network architecture to learn interpretable representation for medical image analysis. Our architecture generates a global attention for region of interest, and then learns bag of words style deep feature embeddings with local attention. The global, and local feature maps are combined using a contemporary transformer architecture for highly accurate Gallbladder Cancer (GBC) detection from Ultrasound (USG) images. Our experiments indicate that the detection accuracy of our model beats even human radiologists, and advocates its use as the second reader for GBC diagnosis. Bag of words embeddings allow our model to be probed for generating interpretable explanations for GBC detection consistent with the ones reported in medical literature. We show that the proposed model not only helps understand decisions of neural network models but also aids in discovery of new visual features relevant to the diagnosis of GBC. Source-code and model will be available at https://github.com/sbasu276/RadFormer
translated by 谷歌翻译
丰富的时间信息和视角中的变化使视频数据成为使用无监督的对比度学习(UCL)技术学习图像表示的有吸引力的选择。最先进的(SOTA)对比度学习技术将视频中的帧视为嵌入空间中的阳性,而其他视频的框架则被视为负面因素。我们观察到,与自然场景视频中对象的多种视图不同,超声(US)视频捕获了器官的不同2D片。因此,即使是相同的美国视频的暂时遥远框架之间几乎没有相似之处。在本文中,我们建议相反使用诸如硬底面的框架。我们主张在UCL框架中对硬度敏感的负挖掘课程进行挖掘,并在硬度敏感的负面挖掘课程中挖掘,以学习丰富的图像表示。我们部署框架以从美国视频中学习胆囊(GB)恶性肿瘤的表示。我们还构建了第一个大型US视频数据集,其中包含64个视频和15,800帧,用于学习GB表示。我们表明,经过我们框架训练的标准RESNET50骨干线可以提高使用SOTA UCL技术预测的模型的准确性,并在Imagenet上对ImageNet上的有监督的预处理模型提高了GB恶性检测任务的预期模型,提高了2-6%。我们进一步验证了方法在COVID-19病理的公开肺图像数据集上的普遍性,与SOTA相比,改善了1.5%。源代码,数据集和模型可在https://gbc-iitd.github.io/usucl上找到。
translated by 谷歌翻译
Drug dosing is an important application of AI, which can be formulated as a Reinforcement Learning (RL) problem. In this paper, we identify two major challenges of using RL for drug dosing: delayed and prolonged effects of administering medications, which break the Markov assumption of the RL framework. We focus on prolongedness and define PAE-POMDP (Prolonged Action Effect-Partially Observable Markov Decision Process), a subclass of POMDPs in which the Markov assumption does not hold specifically due to prolonged effects of actions. Motivated by the pharmacology literature, we propose a simple and effective approach to converting drug dosing PAE-POMDPs into MDPs, enabling the use of the existing RL algorithms to solve such problems. We validate the proposed approach on a toy task, and a challenging glucose control task, for which we devise a clinically-inspired reward function. Our results demonstrate that: (1) the proposed method to restore the Markov assumption leads to significant improvements over a vanilla baseline; (2) the approach is competitive with recurrent policies which may inherently capture the prolonged effect of actions; (3) it is remarkably more time and memory efficient than the recurrent baseline and hence more suitable for real-time dosing control systems; and (4) it exhibits favorable qualitative behavior in our policy analysis.
translated by 谷歌翻译
Creativity is an indispensable part of human cognition and also an inherent part of how we make sense of the world. Metaphorical abstraction is fundamental in communicating creative ideas through nuanced relationships between abstract concepts such as feelings. While computer vision benchmarks and approaches predominantly focus on understanding and generating literal interpretations of images, metaphorical comprehension of images remains relatively unexplored. Towards this goal, we introduce MetaCLUE, a set of vision tasks on visual metaphor. We also collect high-quality and rich metaphor annotations (abstract objects, concepts, relationships along with their corresponding object boxes) as there do not exist any datasets that facilitate the evaluation of these tasks. We perform a comprehensive analysis of state-of-the-art models in vision and language based on our annotations, highlighting strengths and weaknesses of current approaches in visual metaphor Classification, Localization, Understanding (retrieval, question answering, captioning) and gEneration (text-to-image synthesis) tasks. We hope this work provides a concrete step towards developing AI systems with human-like creative capabilities.
translated by 谷歌翻译
Large-scale diffusion models have achieved state-of-the-art results on text-to-image synthesis (T2I) tasks. Despite their ability to generate high-quality yet creative images, we observe that attribution-binding and compositional capabilities are still considered major challenging issues, especially when involving multiple objects. In this work, we improve the compositional skills of T2I models, specifically more accurate attribute binding and better image compositions. To do this, we incorporate linguistic structures with the diffusion guidance process based on the controllable properties of manipulating cross-attention layers in diffusion-based T2I models. We observe that keys and values in cross-attention layers have strong semantic meanings associated with object layouts and content. Therefore, we can better preserve the compositional semantics in the generated image by manipulating the cross-attention representations based on linguistic insights. Built upon Stable Diffusion, a SOTA T2I model, our structured cross-attention design is efficient that requires no additional training samples. We achieve better compositional skills in qualitative and quantitative results, leading to a 5-8% advantage in head-to-head user comparison studies. Lastly, we conduct an in-depth analysis to reveal potential causes of incorrect image compositions and justify the properties of cross-attention layers in the generation process.
translated by 谷歌翻译
Breaking down a document or a conversation into multiple contiguous segments based on its semantic structure is an important and challenging problem in NLP, which can assist many downstream tasks. However, current works on topic segmentation often focus on segmentation of structured texts. In this paper, we comprehensively analyze the generalization capabilities of state-of-the-art topic segmentation models on unstructured texts. We find that: (a) Current strategies of pre-training on a large corpus of structured text such as Wiki-727K do not help in transferability to unstructured texts. (b) Training from scratch with only a relatively small-sized dataset of the target unstructured domain improves the segmentation results by a significant margin.
translated by 谷歌翻译
Prompt tuning is a new few-shot transfer learning technique that only tunes the learnable prompt for pre-trained vision and language models such as CLIP. However, existing prompt tuning methods tend to learn spurious or entangled representations, which leads to poor generalization to unseen concepts. Towards non-spurious and efficient prompt learning from limited examples, this paper presents a novel \underline{\textbf{C}}ounterfactual \underline{\textbf{P}}rompt \underline{\textbf{L}}earning (CPL) method for vision and language models, which simultaneously employs counterfactual generation and contrastive learning in a joint optimization framework. Particularly, CPL constructs counterfactual by identifying minimal non-spurious feature change between semantically-similar positive and negative samples that causes concept change, and learns more generalizable prompt representation from both factual and counterfactual examples via contrastive learning. Extensive experiments demonstrate that CPL can obtain superior few-shot performance on different vision and language tasks than previous prompt tuning methods on CLIP. On image classification, we achieve 3.55\% average relative improvement on unseen classes across seven datasets; on image-text retrieval and visual question answering, we gain up to 4.09\% and 25.08\% relative improvements across three few-shot scenarios on unseen test sets respectively.
translated by 谷歌翻译
意见摘要是创建摘要的任务,以获取用户评论中的流行意见。在本文中,我们介绍了Geodesic Summarizer(GeoSumm),这是一种新型系统,可执行无监督的提取意见摘要。 GeoSumm涉及基于编码器的表示模型,该模型将文本表示为潜在语义单元的分布。 GeoSumm通过在多个解码器层上对预训练的文本表示进行字典学习来生成这些表示。然后,我们使用这些表示形式使用新型的基于测量距离的评分机制来量化审查句子的相关性。我们使用相关得分来确定流行意见,以构成一般和特定方面的摘要。我们提出的模型GeoSumm在三个意见摘要数据集上实现了最先进的性能。我们执行其他实验来分析模型的功能,并展示跨不同域{\ x}的概括能力。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
我们研究了具有$ \ epsilon $ -Global差异隐私(DP)的多臂土匪的问题。首先,我们证明了使用$ \ epsilon $ -Global DP量化土匪硬度的随机和线性土匪的最小值和问题依赖的后悔下限。这些界限表明存在两个硬度制度,具体取决于隐私预算$ \ epsilon $。在高私人制度(小$ \ epsilon $)中,硬度取决于隐私的耦合效果以及有关奖励分布的部分信息。在低私人制度(大$ \ epsilon $)中,具有$ \ epsilon $ -Global DP的土匪并不比没有隐私的土匪更难。对于随机匪徒,我们进一步提出了一个通用框架,以设计基于索引的乐观强盗算法的近乎最佳的$ \ epsilon $全局DP扩展。该框架由三种成分组成:拉普拉斯机制,依赖手臂的自适应发作以及仅在最后一集中收集的奖励来计算私人统计数据。具体而言,我们实例化了UCB和KL-UCB算法的Epsilon $ -Global DP扩展,即ADAP-UCB和ADAP-KLUCB。 Adap-klucb是两者都满足$ \ epsilon $ -Global DP的第一种算法,并产生了遗憾的上限,与问题依赖性下限与乘法常数相匹配。
translated by 谷歌翻译